Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

15MAT31

Third Semester B.E. Degree Examination, Jan./Feb. 2023 Engineering Mathematics – III

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Find the Fourier series of

$$f(x) = \begin{cases} 1 + \frac{4x}{3} & \text{in } -\frac{3}{2} < x \le 0 \\ 1 - \frac{4x}{3} & \text{in } 0 \le x \le \frac{3}{2} \end{cases}$$

Hence deduce that $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$

(08 Marks)

b. Obtain the constant term and the first two coefficients in the Fourier cosine series for y using the following table:

X	0	1	2	3	4	5
у	4	8	15	7	6	2

(08 Marks)

OF

2 a. Obtain the Fourier series for

$$f(x) = \begin{cases} -K & \text{in } (-\pi, 0) \\ +K & \text{in } (0, \pi) \end{cases}$$

Hence deduce that $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$

(06 Marks)

(05 Marks)

b. Find a half range Fourier Cosine Series for $f(x) = (x-1)^2$ in $0 \le x \le 1$.

c. Given the following table:

x°	0	60°	120°	180°	240°	300°
У	7.9	7.2	3.6	0.5	0.9	6.8

Obtain the Fourier series neglecting the terms higher than first harmonics.

(05 Marks)

Module-2

3 a. Find the Fourier transform of the function

$$f(x) = \begin{cases} 1 & \text{for } |x| \le a \\ 0 & \text{for } |x| > a \end{cases}$$

where 'a' is a positive real constant. Hence evaluate $\int_{0}^{\infty} \frac{\sin ax}{x} dx$.

(06 Marks)

b. Find the Z-T of $\cosh \theta$.

(05 Marks)

c. Solve by using z-transforms
$$u_{n+2} + 2u_{n+1} + u_n = n$$
 with $u_0 = 0 = u_1$.

(05 Marks)

OR

4 a. Find the Fourier sine and cosine transform of $f(x) = e^{-ax}$, a > 0, $x \ne 0$.

(06 Marks)

b. Find the Fourier transform of the function

$$f(x) = \begin{cases} 1 - |x| & \text{for } |x| \le 1 \\ 0 & \text{for } |x| > 1 \end{cases}$$

(05 Marks)

c. Given $\pi(z) = \frac{4z^2 - 2z}{(z-1)(z-2)^2}$. Find u_n .

(05 Marks)

Module-3

5 a. Calculate the coefficient of correlation for the following data:

Calculate the coefficient of contain					- 0		
x (Height of Father in inches)	65	66	67	68	69	70	72
y (Height of their Son in inches)	67	68	65	68	72	69	71

(06 Marks)

b. Fit an exponential curve of the form $y = ae^{bx}$ by the method of least squares for the following data:

					100
Number of petals	5	6	7	8	9 10
Number of flowers	133	55	23	7	2 2

(05 Marks)

c. Show that a root of equation $x^3 + 5x - 11 = 0$ lies between 1 and 2. Find the root by Newton-Raphson method. (Carry out 3 iterations) (05 Marks)

OR

6 a. Obtain regression line of y on x for the following data:

X	36	23	27	28	28	29	30	31	33	35
у	29	18.	20	22	27	21	29	27	29	28

(06 Marks)

b. Fit a parabola $y = a + bx + cx^2$ for the data:

X	0	1	2	3	4
у	1	1.8	1.3	2.5	2.3

(05 Marks)

c. Compute real root of $x \log_{10} x - 1.2 = 0$ between 2 and 3 using Regula-Falsi method. Carry out three iterations. (05 Marks)

Module-4

7 a. Using suitable interpolation formula, find y(38) and y(85) for the following data:

1	X	40	50	60	70	80	90
	у	184	204	226	250	276	304

(06 Marks)

b. Construct an interpolating formula for the data given below using Newton's divided difference interpolation formula.

X	2	4	5	6	8	10
f(x)	10	96	196	350	868	1746

(05 Marks)

c. By dividing the range into 6 equal parts, find the approximate value of $\int_{0}^{\pi} e^{\sin x} dx$ using

Simpson's
$$\frac{1}{3}^{rd}$$
 rule.

(05 Marks)

OR

- 8 a. Given $\sin 45^\circ = 0.7071$, $\sin 50^\circ = 0.7660$, $\sin 55^\circ = 0.8192$, $\sin 60^\circ = 0.8660$. Find $\sin 57^\circ$ using an appropriate interpolation formula. (06 Marks)
 - b. Use Lagrange's interpolation formula to find f(9), given the data:

X	5	7	11	13	17
f(x)	150	392	1452	2366	5202

(05 Marks)

c. Evaluate $\int_{0}^{1} \frac{1}{1+x} dx$ taking seven ordinates by applying Simpson's $\frac{3}{8}$ rule. (05 Marks)

Module-5

- 9 a. If $\vec{f} = (2y+3)\hat{i} + xz\hat{j} + (yz+x)\hat{k}$, evaluate the integral $\int_{C} \vec{f} \cdot d\vec{r}$ where 'c' is the curve $x = 2t^2$, y = t, $z = t^3$ from the point (0, 0, 0) to the point (2, 1, 1). (06 Marks)
 - b. Using the divergence theorem, evaluate $\int_{S} \vec{f} \cdot \hat{n} ds$ where $\vec{f} = x^3 \hat{i} + y^3 \hat{j} + z^3 \hat{k}$ and 's' is the surface of the sphere $x^2 + y^2 + z^2 = a^2$. (05 Marks)
 - c. Find the extremals of the functional $\int_{-\infty}^{x} \frac{(y')^2}{x^3} dx$. (05 Marks)

OR

- 10 a. Evaluate $\int_C xy dx + xy^2 dy$ by Stoke's theorem where 'c' is the square in the xy plane with vertices (1, 0), (-1, 0), (0, 1), (0, -1). (06 Marks)
 - b. Verify the Green's theorem in the plane for $\oint_C (xy + y^2)dx + x^2dy$ where 'c' is the closed curve of the region bounded by y = x and $y = x^2$. (05 Marks)
 - c. Solve the variational problem $\delta \int_{0}^{2} [x^{2}(y')^{2} + 2y(x+y)]dx = 0$ given y(1) = y(2) = 0. (05 Marks)